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Abstract

We present a semi-implicit cloth simulation technique that is very
stable yet also responsive. The stability of the technique allows
the use of a large fixed time step when simulating all types of fab-
rics and character motions. The animations generated using this
technique are strikingly realistic. Wrinkles form and disappear in a
quite natural way, which is the feature that most distinguishes tex-
tile fabrics from other sheet materials. Significant improvements
in both the stability and realism were made possible by overcom-
ing thepost-buckling instabilityas well as the numerical instabil-
ity. The instability caused by buckling arises from a structural in-
stability and therefore cannot be avoided by simply employing a
semi-implicit method. Addition of a damping force may help to
avoid instabilities; however, it can significantly degrade the realism
of the cloth motion. The method presented here uses a particle-
based physical model to handle the instability in the post-buckling
response without introducing any fictitious damping.
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1 Introduction

A normal outfit covers more than 90 percent of the human body.
Therefore, the realistic animation of cloth is imperative if we are to
animate humans to a satisfactory level of detail and realism. Over
the last decade a great deal of research has been dedicated to sim-
ulating cloth motion [Terzopoulos and Fleischer 1988; Carignan
et al. 1992; Breen et al. 1994; Courshesnes et al. 1995; Provot 1995;
Eberhardt et al. 1996; Eischen et al. 1996; Baraff and Witkin 1998;
Desbrun et al. 1999; Volino and Magnenat-Thalmann 2000]. All
of the methods proposed to date boil down to numerically solving
an ordinary differential equation, although they differ in regard to
characteristics such as stability, allowed time step size, etc.

Cloth is characterized by strong resistance to stretch and weak
resistance to bending, which leads to a stiff set of equations and
thus prohibits the use of large time steps. However, cloth simulation
techniques must be stable and fast if they are to be of practical use.

Previous studies have shown that implicit methods are well suited
to solving stiff equations with a reasonable step size, and successful
results have been reported in [Baraff and Witkin 1998; Volino and
Magnenat-Thalmann 2000].

Another property that is crucial to the appearance of fabrics in
motion is their buckling behavior. The buckling of fabrics is the
process by which wrinkles form, and leads to structures such as
those shown in Figure 1. The buckling of textile fabrics has a quite
different nature from solid materials [Amirbayat and Hearle 1989],
thus animation of a cloth would not look natural without having
such property. Nevertheless it has been largely ignored though
its problematic nature (instability and non-linearity) was recently
pointed out by [Eischen et al. 1996] and [Yu et al. 2000]. This pa-
per presents a stable and practical solution to this problem.

Figure 1: Buckling of Real Fabrics

The buckling of a thin material involves a very unstable state,
regardless of whether it is rigid (e.g. aluminum sheet) or flexible
(e.g. fabrics). When a compressive force is applied at the extremes
of a thin material, it initially resists changing shape. As this force is
increased, it eventually reaches the neutral equilibrium, the point at
which an infinitesimal increase or decrease in the force bifurcates
the situation in two radically different directions: increasing the
force leads to an unstable post-buckling response whereas the sys-
tem remains at stable equilibrium if the force is decreased. (Buck-
ling will be described in detail in Section 3.2.) Given that buck-
ling is a ubiquitous characteristic of fabrics, creating natural look-
ing cloth in an animation is very difficult without a stable way to
model this phenomenon.

The instability of the post-buckling response arises from a
structural instability [Bathe 1996], not from the stiff equations.
Therefore, the buckling instability cannot be overcome by simply
employing implicit methods. Some cloth simulation techniques
[Baraff and Witkin 1998; Volino and Magnenat-Thalmann 2000]
avoid this instability by adding damping forces1. The damping

1Damping is an important concept in this work. The Implicit method has
an intrinsic damping effect that comes from the formulation itself, which we
refer to asartificial damping. This damping is not related to the nature of
the cloth. On the other hand, we refer to damping that is deliberately added
to the formulation to simulate the nature of the cloth asmaterial intrinsic
damping. A third kind of damping is sometimes added to enhance numerical
stability. We refer to this asfictitious damping. A damping term appearing
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forces help to stabilize the physical system, or equivalently, they
make the system matrix better conditioned and help to maintain
positive definiteness in a semi-implicit formulation. However, the
damping forces can significantly degrade the realism of the sim-
ulated cloth movement. For example, [Volino and Magnenat-
Thalmann 2000] and [Volino and Magnenat-Thalmann 2001] found
that the damping forces can lead to systems in which wrinkles will
not form on the cloth surface, wrinkles resist disappearing, or even
the fabrics resist falling under their own weight.

The artificial damping in implicit methods mainly affects the
in-plane deformation of the cloth because the in-plane rigidity is
much higher than the bending rigidity. Therefore, although artificial
damping is expected to be partially responsible for the degradation
of the quality of the out-of-plane movement of the cloth, we con-
jecture that the degradation in the quality mentioned above arises
mainly from fictitious damping. The method we propose in this pa-
per includes artificial damping (since it is an implicit method) and
material intrinsic damping, but doesnot include fictitious damping.
The need for fictitious damping is avoided through the use of the
predicted static post-buckling response as an effective way to han-
dle the instabilities associated with post-buckling situations. Be-
cause fictitious damping is not used, our method gives significantly
more realistic cloth motion. This represents a significant step for-
ward for the simulation of textile fabrics.

For solid materials, buckling signifies a failure and thus only the
mechanics prior to buckling have been studied (e.g. determining the
critical load on a column). Even in the study of textiles, there has
been no significant result on the buckling process that can be ap-
plied to the dynamic simulation of cloth movement. Therefore, in-
stead of physically simulating the unstable post-buckling dynamic
response, we solve the instability problem by calculating the de-
formation energy of the shape at the predicted static equilibrium of
the post-buckling state. We treat the numerical instability caused
by stiff equations using implicit time stepping. Using the physical
model outlined above and implicit time stepping, we could stably
integrate the equation of motion with a large fixed time step and
without the need for fictitious damping forces.

2 The Physical Model

Before we describe our particle-based physical model of fabrics, we
discuss the problems in recently proposed physical models.

2.1 Problems in Previous Physical Models

Cloth is not a homogeneous continuum. Therefore modeling fab-
rics as a continuum and employing FEM or FDM has several poten-
tial drawbacks, a number of which are described in [Amirbayat and
Hearle 1989]. One drawback of such methods is that they require
a very fine meshing to produce large deformations. For a simu-
lator to be practical in a computer graphics application, however,
coarse discretization (about 1∼ 5 cm spacing between the nodal
points) should be allowed to guarantee reasonable performance. In
the analysis of almost incompressible and/or thin materials such as
cloth, a continuum formulation with the elements at this scale might
produce highly erratic results in the stress and strain [Bathe 1996],
regardless of the interpolation order.

Another problem confronting the continuum approach is treat-
ing the divergence associated with buckling. [Eischen et al. 1996]
used a non-linear shell model for cloth and performed finite ele-
ment analysis to obtain the drape shape. They had to take special
care and use measures such as arc length control to prevent diver-
gence due to the non-linearity of the load-deflection curve or the

in an equation may serve for both material intrinsic damping and fictitious
damping.
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Figure 2: Connectivity of Interacting Particles

indefiniteness of the instantaneous stiffness matrix caused by buck-
ling. [Yu et al. 2000] performed explicit dynamic simulation with
fictitious viscous damping to avoid the divergence problem in the
static analysis of the drape.

The fabric models in [Baraff and Witkin 1998] and [Courshesnes
et al. 1995] are similar and can be understood as systems of con-
nected flat triangles that are treated as a continuum. The in-plane
deformation energy (or stress/strain relationship) of each triangle
is derived from the continuum mechanics formulation. The bend-
ing deformation measure, on the other hand, is based on the an-
gle between adjacent triangles. Therefore the fabric is not treated
as a single homogeneous continuum and the bending and in-plane
properties are modeled separately. The independent treatment of
in-plane and out-of-plane cloth properties allows large bending de-
formation between triangles regardless of the in-plane rigidity of
each triangle. However, the post-buckling instability can be a prob-
lem in this model, because each triangle is modeled as an almost
incompressible material and the bending rigidity between triangles
is very weak. Another problem of this physical model is that the
bending characteristics largely depend on the triangulation. Since
each triangle has very high in-plane rigidity, deformations tend to
develop along the edges of the triangles. This causes a problem in
systems comprised of aligned triangles because bending will occur
along the edges. This problem can be cured by irregular triangu-
lation, although this remedy introduces artificial flexural rigidity
[Courshesnes et al. 1995]. As the triangulation becomes coarser,
the artificial flexural rigidity will grow accordingly.

2.2 Using Interacting Particles

In our search for a way to overcome the drawbacks of the physical
models outlined above, we found that systems of interacting par-
ticles are better suited for generating large deformations and han-
dling the buckling problem. The method presented here draws on
the idea that inspired the work of [Breen et al. 1994], who first
applied the particle model to the simulation of textile fabrics. How-
ever, our particle model is much simpler than that used by Breen
et al. and the treatment of compression and bending deformation
is quite different from their approach. In this section, we describe
the connectivity of the mass points representing the cloth surface.
The associated energy functions and their derivatives are presented
in the next section.

We approximate a cloth with a quadrilateral mesh of particles;
thus each particle can be indexed asP (i, j). Figure 2(a) shows all
the connections associated with a given center particle. With the
exception of particles at the boundaries, where some connections
are broken, every particle has the connectivity shown in Figure 2(a).
Two types of particle interaction model are employed, which are
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referred to astype 1andtype 2.
The type 1interaction model (red lines in Figure 2) is respon-

sible for stretch and shear resistance. For this type of interaction,
the particleP (i, j) is connected toP (i ± 1, j), P (i, j ± 1), and
P (i ± 1, j ± 1). Such connections are referred to as sequential
connections. Thetype 2interaction model (blue lines in Figure 2)
is responsible for flexural and compression resistance. For type
2 interaction, the particles connected toP (i, j) are P (i ± 2, j),
P (i, j ± 2), andP (i ± 2, j ± 2). Note that type 2 connections
are made with every other particle, leading us to refer to them as
interlacedconnections. Figure 2(b) illustrates the sequential and
interlaced connections in a particular direction, in whichS1 ∼ S4

are sequential connections andI1 ∼ I3 are interlaced connections.

3 Energy Functions and Derivatives

In this section we first describe thetype 1interaction model. We
then elaborate on the concept of buckling and its profoundly differ-
ent meanings in rigid materials and fabrics, after which we describe
how this distinction is reflected in our handling of the post-buckling
instability. Based on fabric-specific buckling behavior, we formu-
late thetype 2interaction model. Finally, we add a material intrinsic
damping to those models.

In the description of the energy functions and their deriva-
tives presented below, the distinctive features of our formulation
are highlighted by comparing the results of the proposed model
with those presented in [Baraff and Witkin 1998] and [Volino and
Magnenat-Thalmann 2000].

3.1 Type 1 Interaction

The type1 interaction is represented by a simple linear spring
model, for which the energy function for particlesi andj is,

E =

{
1
2
ks(|xij | − L)2 : |xij | ≥ L

0 : |xij | < L
(1)

wherexij = xj − xi, L is the natural length, andks is the spring
constant. Note that this energy function accounts for the tension
only. The force acting on particlei due to the deformation between
the two particles is,

fi = − ∂E

∂xi
=

{
ks(|xij | − L)

xij

|xij |
: |xij | ≥ L

0 : |xij | < L
(2)

The Jacobian matrix of the force vector is

∂fi
∂xj

=

{
ks

xijx
T
ij

xT
ijxij

+ ks(1− L
|xij |

)(I− xijx
T
ij

xT
ijxij

) : |xij | ≥ L

0 : |xij | < L
(3)

The first term tells us that the stiffness in the direction of the spring
interaction is constant, which is an obvious consequence of model-
ing the interaction using a linear spring. The second term tells us
that the stiffness orthogonal to the interaction direction is propor-
tional to(1− L

|xij |
). If we consider the 2-dimensional structure of

the cloth, the direction orthogonal to all interactions corresponds to
the out-of-plane direction. When the spring is stretched, in an im-
plicit formulation, the second term plays an important role in stabi-
lizing the spring because it introduces large positive eigenvalues of
the system matrix in that direction. (If the same function were to be
used for compression, the second term might turn the overall sys-
tem matrix (I−α∂f/∂v−β∂f/∂x) indefinite sinceks(1− L

|xij |
)

is negative and can be arbitrarily large regardless of the time step
size, as|xij | → 0. For this reason we do not use the same function

for compression. Compression is handled by thetype 2interaction
model, which is presented in Section 3.3.)

[Volino and Magnenat-Thalmann 2000] used the same spring
model (i.e.,1

2
ks(|xij |−L)2) for both stretching and compression in

running a semi-implicit method. In their formulation, however, the
second term of the Jacobian matrix in Equation 3 is omitted for both
stretch and compression. They added a damping term to avoid null
eigenvalues in the orthogonal direction. For a compressed spring,
addition of a damping force in the out-of-plane direction can make
the system matrix better conditioned. However, this damping force
may generate unnecessarily high resistance to the movement of the
cloth.

[Baraff and Witkin 1998] used a linear elastic model for both
stretching and compression. Although their formulation looks dif-
ferent from ours, we can make the similarity apparent by converting
their formulation to that of the linear spring model. If we define the
behavior function (as they refer to it) asc = |xij | − L, then the
force vector will be same as Equation 2 and consequently the Ja-
cobian∂f/∂x will also be the same. Therefore, when the spring
is compressed, the Jacobian matrix has negative eigenvalues in the
orthogonal direction as indicated above. [Baraff and Witkin 1998]
reduced the possibility of the system matrix becoming indefinite
by the inclusion of a specially designed damping force. In their
formulation, the damping force for stretch/compression does not
contribute to the out-of-plane motion, but the damping force for
bending acts along the out-of-plane direction. This damping force
for bending will help to make the system matrix better conditioned
at the cost of adding resistance to the out-of-plane movement of the
cloth. Unfortunately there is still no guarantee that the damping
will make the matrix positive definite.

In our formulation, a highly stiff linear spring is used only for
tension. Therefore the system matrix is guaranteed to be positive
definite, and no additional damping term is needed to cure the diver-
gence problem. However, the cloth may shrink under compressive
load if no compression resistance is included in the model. In our
method, thetype 2interaction model simultaneously accounts for
compression and bending, and consequently the buckling problem
is handled in a single interaction model.

3.2 Our Solution to the Post-Buckling Instability

As mentioned above, buckling causes serious stability problems in
physical simulations of cloth. It is interesting to note that buck-
ling has quite different meanings in rigid materials and textile fab-
rics. Buckling means a failure in rigid materials, whereas it means
success in textile fabrics [Amirbayat and Hearle 1989]. The post-
buckling behavior in rigid materials is quite destructive, while the
same behavior in textile fabrics naturally evolves into the shapes
that are the essence of a fabric’s appearance. We refer to [Amir-
bayat and Hearle 1989] for this fabric-specific property. Although
there are clear distinctions between the buckling behavior of fab-
rics and rigid materials, they are not reflected in most existing cloth
simulation techniques. Since our solution to the post-buckling in-
stability is based on the distinguished feature of fabric buckling, we
clarify the concept of buckling in this section.

First, we analyze the buckling of a rigid material in terms of solid
mechanics. We then contrast this phenomenon with the buckling of
textile fabrics. Consider the idealized rigid column shown in Fig-
ure 3(a), which consists of two rigid bars connected at pointC by a
rotational spring of stiffnesskθ. In this configuration, the bending
resistance is condensed at pointC. Now, suppose an axially com-
pressive forceP is applied at pointA. Since the rotational spring
resists bending, the two bars remain straight at equilibrium (Figure
3(b)). Now, suppose that the structure under forceP is disturbed
by an external force that causes a small lateral movement of point
C (Figure 3(c)). The compressive forceP will try to increase the
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Figure 3: Column Buckling

lateral displacement, while the rotational spring will try to restore
the system to the original straight position. Suppose that the distur-
bance is removed at this moment. IfP is relatively small, the bars
will return to the straight position (i.e. the structure is stable). How-
ever, if P is relatively large the lateral displacement will become
larger and larger (i.e. the structure is unstable), and the structure
will eventually collapse by lateral buckling. The magnitude of the
axial force at which the structure bifurcates into either the stable or
unstable condition by application of an infinitesimal increase or de-
crease in force is known as the critical load and is denoted byPcr.
At the critical load, the deflection of the structure is mathematically
arbitrary. Once the axial load exceedsPcr the structure collapses
and the original shape cannot be recovered, regardless of the degree
to which the load exceedsPcr, and no matter how quickly the load
is reduced back to a value less than or equal toPcr.

Now, let us consider the behavior when a fabric buckles. As
for rigid materials, a textile fabric will buckle when subjected to
an axial force greater than the critical load. When it buckles, it
exhibits an unstable post-buckling response similar to that found in
rigid materials. In contrast to rigid materials, however, fabrics do
not break or collapse. Instead, they quickly pass the unstable state
and reach a stable equilibrium (a smoothly bent shape). Moreover,
the bent shape tends to return to the original straight shape when
the axial load is removed [Amirbayat and Hearle 1989].

As described above, textile fabrics pass through an unstable state
when they buckle. The simulation of this unstable post-buckling
response requires special care if divergence problems are to be
avoided. Once the material goes into the unstable post-buckling
state, the deflection increases even when the load decreases. In
other words, the stiffness of the material in the buckling direc-
tion is instantaneously negative. Especially in semi-implicit meth-
ods where the internal force is explicitly predicted with derivatives
[Baraff and Witkin 1998; Volino and Magnenat-Thalmann 2000],
this structural instability makes the system matrix extremely ill-
conditioned or indefinite, and a large time step often leads to di-
vergence. There have been a number of efforts to avoid this post-
buckling instability in the analysis of cloth deformation. For ex-
ample, [Eischen et al. 1996] used an adaptive arc-length control of
the load-deflection curve, and [Yu et al. 2000] employed an explicit
method with fictitious damping to avoid divergence.

We solve the structural instability problem by predicting the
static post-buckling response. The approach developed here is
based on the above observations regarding fabric-specific behavior.
The concept underlying our approach is that since the fabric quickly
passes the unstable post-buckling state to reach a stable equilib-
rium, it has little chance to get into the unstable post-buckling state
at the discrete time steps of the simulation. Thus we assume that
the fabric is not in the unstable post-buckling state at any time step.
Then, in calculating the internal force at each time step, we can
evaluate the deformation energy in the area where the cloth buckles

L
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(a) before buckling (b) after buckling

Figure 4: Simplified Structure for Type 2 Interaction
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Figure 5: Numerical Solutions of Moment Equilibrium Equation

from the locally estimated deformed shape, which corresponds to
the shape at the static equilibrium after buckling. The details of this
procedure are presented in the next section. Unless the time step
is miniscule, the loss of accuracy resulting from the approximated
buckling response will be much less than the accuracy loss (and
instabilities) resulting from the plain implicit time stepping. The
approximated response model relieves the burden ofsimulatingthe
unstable post-buckling dynamic response. According to our simu-
lations, the approximated response model generates very realistic
cloth motion with significantly improved stability. Wrinkle forma-
tion was quite natural. The simulation could be performed with a
large step size.

3.3 Type 2 Interaction

The type 2 interaction model is responsible for the post-buckling
response created by compressive and bending forces. We predict
the shape of the fabric after buckling and calculate the deforma-
tion energy from the deformed shape as described in the previous
section.

The beam structure shown in Figure 4(a) approximates the re-
gion between two particles. Prior to buckling, the structure is a
straight beam of lengthL.

After the structure buckles under a compressive load (Fig-
ure 4(b)), it will eventually reach a stable equilibrium structure.
To predict the equilibrium shape, we use the moment equilibrium
equation under the pinned ends condition[Gere 2001], which is
given by

kbκ + Py = 0, (4)

wherekb is the flexural rigidity,κ is the curvature,P is the com-
pressive load, andy is the deflection. Because we are modeling
systems with large deflections, we cannot use the approximation
κ = y′′. Using the exact expression for the curvature2, we obtained
several numerical solutions corresponding to different values ofkb

2For a more general moment equilibrium equation for the analysis of
fabric buckling, see [Kang et al. 2001].
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and P . Two of these solutions are shown in Figure 5. The re-
sults show that the shape after buckling is close to a circular arc
even when the deformation is large. Therefore, we approximated
the equilibrium shape as a circular arc with constant arc length. As
an alternative, we could have constructed a table of the numerical
solutions of the moment equation at various values ofP

kb
for more

accurate analysis. This was not undertaken because the results pro-
duced using the circular arc assumption were quite realistic. The
bending deformation energy can be calculated from the estimated
shape using the relation:

E =
1

2

∫ L

0

Mκdx (5)

whereM is the bending moment andκ is the curvature. Taking into
account the linear relationship between the curvature and bending
moment, and the constant curvature through the structure, the inte-
gral yields the solution:

E =
1

2
kbLκ2, (6)

wherekb is the flexural rigidity. Since the arc length is assumed
to be the same as the initial straight lengthL, the curvatureκ can
be expressed solely in terms of the distance|xij | between the two
extremities.

κ =
2

L
sinc−1(

|xij |
L

), (7)

where sinc(x) = sin x
x

.
The force vector is derived as,

fi = kbκL
dκ

d|xij |
xij

|xij |
= kbκL

(
d|xij |

dκ

)−1
xij

|xij |
(8)

= kbκ
2(cos

κL

2
− sinc(

κL

2
))−1 xij

|xij |
(9)

≡ fb(|xij |)
xij

|xij |
(10)

The blue curve in Figure 6 depicts the dependence offb on the dis-
tance between particles (approximated with a fifth order polynomial
function). The unit of each axis in this graph is made dimensionless.
The system shows the following behavior. When the compression
forceP is initially applied (top right corner of Figure 6), the struc-
ture remains straight until the load reaches the buckling loadPcr.
However, in real systems geometric imperfections in the structure
cause the fabric to start to buckle at the onset of loading, giving
an actual curve (the green curve in the graph) that exhibits finite
deflection even at small magnitudes of the compression force, and
asymptotically approachesfb as compressive force increases [Gere
2001]. To model this characteristic, we used the functionf∗

b in our
final implementation:

f∗
b =

{
cb(|xij | − L) : fb < cb(|xij | − L)

fb : otherwise (11)

wherecb is a constant of our choice, usually assigned a value com-
parable toks. Although we could have used a higher order function
to model the deflection at small values of the compression force,
we found no significant difference in the results obtained using
higher order functions and those obtained with the linear function
cb(|xij | − L) (red curve in Figure 6).

The Jacobian matrix of the force vector is derived as

∂fi
∂xj

=
df∗

b

d|xij |
xijx

T
ij

xT
ijxij

+
f∗

b

|xij |
(I−

xijx
T
ij

xT
ijxij

). (12)
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Figure 6: Nondimensionalized Curves ofP vs. |xij |

In the above equation,df
∗
b

d|xij |
is always positive but f∗b

|xij |
is always

negative, creating the possibility that the second term could turn the
system matrix indefinite. To guarantee the positive definiteness of
the system matrix, we dropped this term and thus the force in the
orthogonal direction is not affected by implicit filtering. Although
this force is not filtered, there is little possibility that the system
will diverge even when a large time step is employed because the
magnitude of this force is very small compared to the stretch force,
and it is always finite. Note that in a model where the repulsive
and contractive forces are equally strong, dropping the orthogonal
term can make the system unstable under a large time step unless
the bending resistance is of comparable strength.

The above discussion of the type 2 interaction model highlights
the necessity of interlacing the type 2 connections in the manner
shown in Figure 2(b). If only sequential connections were used, the
global shape could be bent without increasing the bending energy
provided that each local connection maintained the initial distance.

3.4 Damping

The physical model described above is quite stable; thus, there is
no need for additional energy dissipative terms to stabilize the nu-
merical procedure. However, we do need to consider the intrinsic
damping property of fabrics. Without an appropriate (material in-
trinsic) damping term, the simulated fabric can exhibit large unre-
alistic in-plane oscillations. To include this type of damping, we
added a simple linear damper along the direction of interaction.

The damping force exerted on particlei from the interaction with
particlej is given by,

fi = −kd(vi − vj) (13)

and the Jacobian matrix is simply expressed as,

∂fi
∂vj

= kdI. (14)

Note that the force term in Equation 13 does not add any damp-
ing to the orthogonal direction. This is important because the most
interesting fabric deformation occurs in the out-of-plane direction.

The above force term does not create a filtering effect under a
semi-implicit formulation when the cloth undergoes a linear rigid
motion (i.e., when the velocity vectors of all the particles are identi-
cal). This is the case because for such a motion the 3×3 block-wise
row sums of the matrix∂f

∂v
are 3×3 zero matrices from the above

equations, and the rigid motion vectorvrigid is an eigenvector of
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∂f
∂v

with zero eigenvalue. Therefore, there is no implicit filtering ef-
fect caused by∂f

∂v
. Even when the∂f

∂x
terms in Equations 3 and 12

are included in the system equation, there will be no implicit filter-
ing to the rigid motion, provided that all the interacting directions
of particlei are orthogonal tovi for all i and that the cloth is not
stretched, since the∂f

∂x
terms in Equations 3 and 12 also produce

null vectors when multiplied byvrigid. Therefore, the motion to
the orthogonal direction would not be filtered under a semi-implicit
formulation.

In more general situations, even though the above condition is
not met, our formulation has very small artificial damping in the
out-of-plane direction, which potentially makes the cloth movement
look more realistic.

4 Numerical Integration

We use semi-implicit integration with a second-order backward dif-
ference formula (BDF). Thek-th order BDF is defined as,

d

dt
=

1

∆t

k∑
q=1

1

q
(∆−1)q, (15)

where
∆−1x = xn+1 − xn.

Fork = 2, the discretization oḟx becomes,

ẋ =
1

∆t
(
3

2
xn+1 − 2xn +

1

2
xn−1). (16)

Considering both performance and accuracy, we chose second order
BDF for the semi-implicit formulation. The second order BDF cre-
ates less artificial damping than the first order BDF, but is equally
stable.

The state equation of motion(
ẋ
v̇

)
=

(
v

M−1f

)
(17)

is discretized with the second order BDF as

1

∆t

(
3
2
xn+1 − 2xn + 1

2
xn−1

3
2
vn+1 − 2vn + 1

2
vn−1

)
=

(
vn+1

M−1fn+1

)
. (18)

The nonlinear termfn+1 in the above equation is replaced with

fn+1 = fn +
∂f

∂x
(xn+1 − xn) +

∂f

∂v
(vn+1 − vn). (19)

By combining Equations 18 and 19, we can obtain a linear sys-
tem rearranged either for∆−1x or ∆−1v. If we rearrange the lin-
ear system for∆−1x, the equation becomes,

(I−∆t
2

3
M−1 ∂f

∂v
−∆t2

4

9
M−1 ∂f

∂x
)(xn+1 − xn)

=
1

3
(xn − xn−1) +

∆t

9
(8vn − 2vn−1)

+
4∆t2

9
M−1(fn − ∂f

∂v
vn)− 2∆t

9
M−1 ∂f

∂v
(xn − xn−1). (20)

The linear system of Equation 20 is sparse and generally unbanded.
We solve this system using a preconditioned conjugate gradient
method. We used a3 × 3 block diagonal matrix for the precondi-
tioner, which showed an improvement of approximately 20% over
the diagonal preconditioner. In addition, we assessed other precon-
ditioners such as IC and ILU but found no performance gain though
the number of iterations decreased.

5 Collision Handling

Collision detection and response model is not a contribution of this
paper. In this section, we briefly describe how we handled collisions
in our implementation.

To detect collisions we use a voxel-based collision detection al-
gorithm similar to that proposed by [Zhang and Yuen 2000]. After
voxelizing the space in which the cloth is enclosed, we register each
cloth particle and solid triangle to the corresponding voxels based
on their spatial coordinates. Then, we independently perform colli-
sion detection for each voxel. This voxelization method locates the
possible collisions very efficiently and shows nearly linear perfor-
mance.

We detect the cloth-solid collision by checking the particle-
triangle pairs to determine if particles are beneath the solid surface.
To avoid missing pairs near the voxel boundaries, the triangles are
redundantly registered to the nearby voxels. When a collision is
detected, the particle’s next displacement along the normal direc-
tion of the colliding surface is determined, and this constraint is en-
forced using the invariant method in the conjugate gradient iteration
proposed in [Baraff and Witkin 1998]. For the tangential direction,
we add a frictional force that is proportional both to the constraint
force and to the velocity difference between the solid surface and
the particle in contact.

To test for self-collision, we check the particle-particle pairs. If
the particles are too close, we simply add a repulsive proximity
force between the colliding particles. The Jacobian matrix of this
force is made to have null eigenvalues in the directions orthogonal
to the repelling direction as in the case of thetype 2 interaction
model in Section 3.3.

6 Results

This section reports the results from several simulations.
The animations of these simulations can be found at
http://graphics.snu.ac.kr/ ∼kjchoi/cloth.htm

Table 1 summarizes the performance of our algorithm on a
Pentium3-550 machine. In this table, the CPU sec/frame field cites
the total CPU time required to carry out all of the steps (i.e., col-
lision detection, linear system setup, conjugate gradient iteration,
etc.) required to produce one frame of 30 Hz animation. For all the
simulations, the collision detection time was less than 20% of the
total CPU time. The mesh resolutions of the clothes in the anima-
tions were aboutL = 1 ∼ 2cm.

For the simulations involving human motions (Animations 1∼4),
the time step was fixed to∆t = 1/90s throughout the anima-
tion; thus the simulator produced one frame of 30 Hz animation
with three time steps. The simulations were stable despite the use
of a fixed time step. All attempts to use a time step greater than
1/90s encountered collision handling failures before the stability
limit was reached.

In Animation 1(a), the character is wearing a one-piece made of
a thin fabric. The nature of the fabric was controlled by assigning a
small value to the bending rigidity. The character walks at a normal
pace without any fast movements. Nevertheless the cloth motion is
quite responsive; the wrinkle details delicately form and disappear.
However, we considered the cloth motion in Animation 1(a) to be
more responsive than would be expected for a real cloth. To pro-
duce a more fabric-like motion, we increased the bending rigidity
and intrinsic damping, and reduced the frictional force. The result
was Animation 1(b). Animations 2 and 3 contain more vigorous
character motions, which created very dynamic movement of the
cloth and wrinkles. In Animation 4 the character is wearing jeans.
The jeans fabric was modeled by assigning it a high bending rigid-
ity and a high resistance to buckling. The animation produced the
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Table 1: Performance Summary

animation # particles # triangles CPU sec/ time step
of cloth of solid frame (s)

1(a) 5608 13802 6.13 0.011
1(b) 5579 13802 5.86 0.011
2 5579 15308 5.68 0.011

top 3396 15308 2.98 0.0113
skirt 3456 15308 3.01 0.011
top 3294 14324 3.25 0.0114
pants 6624 14324 7.01 0.011

5 2601 0 0.18 0.2

Figure 7: Snapshots from Animation 5 : Stability Test (∆t = 0.2s)

buckled shapes near the knees and ankles quite well, which are fre-
quently observed in real jeans. Several snapshots taken from each
of the animations 1∼4 are shown in Figure 8.

Animation 5 was designed purely to determine the maximum
time step that could be used in our cloth animation technique; it
was not intended as a realistic animation. The simulation modeled
a square of fabric draped over a solid box, as shown in Figure 7.
To exclude the collision detection problem we did not explicitly
include the box; Instead, we simply constrained the movement of
the sub-square region of the fabric. Additionally, we disabled both
self-collision and solid-collision. Under the above conditions, we
verified that the algorithm runs stably with time step sizes up to
100s, although the resulting animation was very choppy and it re-
quired hundreds of time steps for the fabric to settle down to the
final shape. Such a large time step is not meaningful and cannot
possibly generate realistic animation because the derivatives have
no significance after 100 seconds. A marginally acceptable anima-
tion with self-collision enabled was obtained with∆t = 0.2s. Sev-
eral snapshots taken during this animation are shown in Figure 7.

Although there is no established method or system for validat-
ing the dynamic motion of cloth, our technique produced anima-
tions that are visually quite believable. It is noteworthy that these
animations were obtained using a reasonable, practical amount of
computation.

7 Conclusion

The groundbreaking work of [Baraff and Witkin 1998] on im-
plicit time stepping greatly reduced the computational cost of in-
tegrating the stiff equations used in simulating textile fabrics, and
thereby provided a practical solution for animating clothed char-
acters. However, the phenomenon of buckling, which is another
source of instability and a crucial property in cloth deformation,
has been largely ignored until now. If the buckling problem can-
not be handled appropriately, natural cloth animation would require
enormous (almost impractical) amount of computation.

This paper represents the first report of a stable and practical
method to handle the post-buckling instability without introducing
a damping force into the dynamic simulation. The proposed method
was shown to produce very realistic motion of clothes made from a

range of fabric types using a uniform time step size. In particular,
the power of the new method was shown in the animation of a light
and thin cloth where sensitive response of cloth is required, which
was very difficult to produce using the previous methods.

The tremendously increased stability of our algorithm allowed
the simulation of the motion of cloth with time steps of 0.2 seconds
or longer which could not be achieved in previous methods.
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Figure 8: Snapshots from Animations 1∼4. Each animation corresponding to each row shows different materials with different parameters.
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